
Radio Interferometric Image Reconstruction

for the Square Kilometer Array:

A Deep Learning Approach

Tarek Allam Jr

September 12, 2016

Supervised by:

Dr. Jason McEwen & Dr. Denise Gorse

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Master of Science

of

University College London.

Department of Computer Science

University College London

2

Abstract

There are many algorithms that attempt to reconstruct radio interfero-

metric images from raw visibilities acquired by radio telescopes. This project

proposes a novel technique of applying deep learning using convolutional neu-

ral networks to solve the ill-posed problem of recovering images. The demand

for new scalable algorithms is driven by advances in telescope technology and

instrumentation; the amount of data these new telescopes will collect when

in operation will not be able to be analysed using today’s techniques.

Several experiments are conducted that explore different physical obser-

vational strategies to determine if a model can be developed that not only

works well for a single telescope configuration but can be deployed for use

with any radio telescope.

The results herein are compared to state-of-the-art radio imaging algo-

rithms and show good results in comparison with regards response time and

the quality of reconstruction, possibly paving the way for further research

into this method.

Contents

1 Introduction 7

2 Background & Literature Review 9

2.1 Radio Astronomy & Interferometry 9

2.2 Image Reconstruction . 13

2.2.1 Classical Algorithms 13

2.2.2 Modern Algorithms . 14

2.3 Convolutional Neural Networks 16

2.3.1 Architectural Components 19

3 Design & Methodology 22

3.1 Super Resolution Neural Network: SRCNN 22

3.2 Data . 25

3.2.1 Thresholding . 26

3.2.2 Handling Overfitting and Underfitting 28

3.3 Tools & Technology . 30

3.3.1 Frameworks . 30

3.3.2 Computer Resources 31

3.4 Modeling Visibilities . 32

3.5 Network Architecture and Hyperparameters 34

3.6 Workflow . 34

3

CONTENTS 4

4 Results 38

4.1 Preliminary Results Using ImageNet 38

4.2 Astronomically Trained Networks 39

4.2.1 Single Telescope Observation 39

4.2.2 Multiple Telescope Observations 44

4.3 User Deployment Investigations 45

5 Discussion 50

5.1 State of the Art Comparisons 50

5.2 Further Work . 51

5.2.1 Deconvolutional Layers 52

5.2.2 Max Pooling and Unpooling 52

5.2.3 Bespoke Loss Function 54

5.3 Conclusions . 54

Appendices 56

A Thresholding 56

B Visibilities 58

C Prototxt File 61

Bibliography 66

List of Figures

2.1 Absorption windows . 10

2.2 Traditional Neural Netowrk Architecture and Convolutional

Neural Network Architecture Comparison 17

2.3 Convolution Operation . 18

2.4 General Convolutional Neural Netowrk Architecture 20

3.1 Super Resolution Convolutional Neural Network 24

3.2 Comparison of astronomical image observed in the optical do-

main (a) and with an astronomical image oberved in the radio

domain (b) . 27

3.3 Exploration of threshold range in 0.18 - 0.20 28

3.4 Deep Learning Library Review Wiki Post 30

3.5 Visualisation of binary masks of varying PI-values 33

4.1 Dirtied natural image as input into SRCNN 39

4.2 Randomly selected natural images used to test how SRCNN

handles a different low resolution synthesising method. 40

4.3 Randomly selected astronomical images used to test how SR-

CNN handles a different low resolution synthesising method. . 41

4.4 9-1-5 Architecture, trained for 100,000 iterations 42

4.5 9-5-5 Architecture, trained for 100,000 iterations, PI = 0.2

and mask set throughout training 42

5

LIST OF FIGURES 6

4.6 9-5-5 Architecture, PI-value = 0.2 and set mask 43

4.7 9-9-5 Architecture . 43

4.8 9-5-5 Architecture, PI-value = 0.2 but mask allowed to vary

in training. 45

4.9 9-5-5 Architecture, trained with varying PI-value and varying

mask . 45

4.10 Relative SNR and absolute SNR for a setting of fixed PI-value

= 0.2 and set mask in training 46

4.11 Relative SNR and absolute SNR for a setting of fixed PI-value

= 0.2 but mask allowed to vary in training 47

4.12 Relative SNR and absolute SNR for a setting of both PI-value

and the mask being allowed to vary in training 49

5.1 Radio Interferometric Imaging Algorithm Comparisons 51

5.2 Learning Deconvolution Network for Semantic Segmentation

Network Architecture . 53

5.3 L2 Normalisation Problems 54

A.1 Comparison of threshold levels for astronomical images. . . . 57

Chapter 1

Introduction

Radio interferometric telescopes allow astronomers to make observations of

the sky at otherwise inaccessible angular resolution. We are entering a new

era of radio astronomy, with new radio interferometers under construction

and design. A notable example is the Square Kilometre Array (SKA), whose

science goals range from strong field tests of gravity to probing the era of

reionization to astrobiology. However, the SKA will produce a deluge of

data that existing imaging techniques will not be able to handle. This

project presents novel solutions tailored to the problem of recovering im-

ages from the raw measurements acquired by radio telescopes. There exist

many techniques today for signal reconstruction such as compressed sensing

and deconvolution methods. These will be discussed further in Chapter 2

which will aim to provide an overview of the state of research today regarding

image reconstruction.

Following a discussion of the radio imaging techniques of today, Chapter 2

also presents alternative areas of research in image processing that can be

used for radio interferometric image reconstruction. This chapter will also

present a brief overview of modern machine learning methods and how they

relate to the problem at hand.

The design and methodology is described in Chapter 3. This chapter

7

CHAPTER 1. INTRODUCTION 8

will outline how data has been collected and pre-processed. It will give

an overview of the choices that have been made in regards to the research

pipeline noting that as a research project much of the development has been

carried out in an iterative approach, the decisions as to the direction of

research are accounted here.

Chapter 4 examines the results that have been gathered, including a full

analysis of the results as well as interpretation what these results physically

mean in the context of radio interferometry.

Finally, the project is concluded in Chapter 5 with a discussion of the

results obtained. An outline of potential further work is expressed and where

further work can be carried out.

An Appendix section follows this report which includes mathematical

overviews for certain topics as well as larger code snippets that have been

used for this project. The reader is encouraged to review the appendices

to gain a full appreciation of the problems facing radio interferometric im-

age reconstruction. The reader is also encouraged to visit http://www.

astro-informatics.org/wikis/radio_learning/. Apart from two house-

keeping posts all the material on this website has been produced in conjunc-

tion with this project.

http://www.astro-informatics.org/wikis/radio_learning/
http://www.astro-informatics.org/wikis/radio_learning/

Chapter 2

Background & Literature

Review

2.1 Radio Astronomy & Interferometry

For thousands of years, man has looked to the sky to observe the heavens

and wonder about the celestial objects above. The observation of celestial

objects is called astronomy, and in recent times an explosion of activity has

been seen due to the improvements in technology and instrumentation.

Earth’s atmosphere limits what can be observed on the ground. Depend-

ing on the wavelength, λ, of the electromagnetic radiation, most is absorbed

by the atmosphere. There exists a few windows where electromagnetic radi-

ation can reach the instruments on the ground (Figure 2.1), the most impor-

tant of which is the optical window, ranging from around 300nm to 800nm.

This is considered to be the most important as this is range that corresponds

to the sensitivity of the human eye [Karttunen et al., 2007]. Another large

window exists at wavelengths 1mm to 20m, called the radio window. For a

long time, the majority of research was conducted in only in the optical win-

dow, however, as technology has progressed with communications and signal

processing, radio astronomy (as well as X-ray astronomy, infrared astronomy

9

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 10

Figure 2.1: This figure shows which wavelengths of electromagnetic
radiation are observable at ground level (Reproduced
from [Burke and Graham-Smith, 2010])

etc.) is now as much of an active area as optical astronomy.

The radio spectrum is of great interest to astronomers and astrophysi-

cists. Radio astronomy enables the study of the cosmic microwave back-

ground (CMB) which holds information about the beginnings of the universe.

Radio astronomy is also the specialist tool for probing faraway exotic astro-

physical objects such as neutron stars, black holes and quasars. It is possible

to investigate the molecular components of the interstellar medium (ISM)

with radio astronomy through analysis of emission processes such as syn-

chrotron radiation, breaking radiation and dust emission using spectroscopy.

The importance of radio astronomy can not be stressed enough but the above

gives a very brief insight into the kind of physics that can be explored when

making observations in the radio window.

However, when observing through radio astronomy telescopes, as with

other kinds of telescopes, there is an upper limit for resolution. In simplified

terms, the minimum angular distance one can observe at a given wavelength,

λ, and with a diameter of of aperture, D, can be represented with the formula

shown in Equation 2.1

Θ =
λ

D
(2.1)

where Θ is in radians.

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 11

This equation can be understood if one considers what can be observed

through the human eye. The pupil of the eye has a diameter of the order

of millimeters ∼ 2mm and observes light, which is electromagnetic radiation

of wavelength ∼ 0.5µm. Using Equation 2.1 the eye can resolve up to 50

arcsec of angular distance. Now consider the large optical telescope, Hubble1.

Hubble has a much larger diameter of 2.4m but observes radiation of the

same wavelength. This increase in collecting area improves the resolving

power to 0.05 arcsecs which is desirable for astronomical objects that are

very small. The largest radio telescope, the Arecibo Radio Telescope spans

305m in diameter, with an effective collecting area of ∼ 200m.2 It observes

wavelengths around 6cm which gives a resolving power of 60 arcsec, which

is similar to the resolving power of the human eye. Considering this is the

largest radio telescope that has been built and yet the resolving power is no

better than the human eye, alternative techniques are required to improve

resolution. To have single arcsec resolution at radio wavelengths one needs

kilometer sized telescopes; to achieve this synthesis techniques are necessary

using interferometric telescopes.

Interferometry is a technique that uses many small apertures to ‘syn-

thesise’ a much larger one. One infers properties about the source from

the received electric field created by aggregating electromagnetic radiation

measurements from multiple telescopes. Current synthesis telescopes that

exist today are the Very Large Array (VLA) which achieves resolution down

to 1.4 arcsec from effective aperture size of 35km and the Atacama Large

Millimeter Array (ALMA) which goes even further down to 0.005 arcsec

resolution from effective aperture size of 15km. However, these kind of tele-

scopes operate in a different way than normal single dish telescopes since

only fragments of the aperture are really collected. What is actually mea-
1http://hubblesite.org/
2http://www.naic.edu/

http://hubblesite.org/
http://www.naic.edu/

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 12

sured is the coherence between pairs of antennas. The correlation between

the signals observed at pairs of antennas is a complex visibility function and

corresponds to a Fourier co-efficient, where the Fourier co-efficient depends

on the configuration of the telescope i.e. how the pairs of antennas are ar-

ranged on the ground. Many telescopes, correlating all these signals gives

many measurements in the Fourier plane. One might naively think to re-

cover the image, simply do an inverse Fourier transform to go back to image

space. However, when this is done, a dirty image is produced. It is called

a dirty image because it is missing information due to only a finite number

of measurements being collected in the Fourier plane. To completely recover

the image using an inverse Fourier transform of the Fourier co-efficients, one

would need to have sampled at an infinite number of points in the plane.

This is the fundamental problem in radio astronomy and the core problem

that is being addressed in this project; how can one best recover an image

that has been observed through interferometric telescopes.

2.2 Image Reconstruction

The incomplete information that is gathered defines an ill-posed problem

of image reconstruction. The problem can be represented in matrix form,

shown in Equation 2.2, as the reconstruction of a signal x, x ∈ RN , from

measured visibilities y. The visibilities are of the form y ∈ CM

y = Φx + n (2.2)

where n is instrumentation noise and Φ is a matrix of the form Φ = MF.

The matrix M ∈ RM×N defines a binary mask that describes the configura-

tion of the interferometer, and the matrix F ∈ CN×N carries out a Fourier

transform on the Fourier co-efficients collected. N is the number of discrete

sampled points on a grid given by N =
√
N ×

√
N . To determine x one can

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 13

apply the adjoint matrix of Φ, Φ> to y, where Φ> = F>M>, resulting in

the dirty image (See Equation 2.2.) The aim is to develop an algorithm that

can recover the ground truth image (or as close as possible) from the dirty

image that is measured.

Φ>y = F>M>y = x (2.3)

2.2.1 Classical Algorithms

Algorithms currently exist that attempt this reconstruction with the most

famous being CLEAN [Hogebom, 1974]. CLEAN, developed over 40 years

ago, uses deconvolution techniques which attempt to decompose the im-

age into a set of δ functions3 with the assumption the object is a point

source [Starck and Murtagh, 2007]. Further attempts at image reconstruc-

tion use the Maximum Entropy Method (MEM) [Skilling and Bryan, 1984]

but CLEAN is still most commonly used today [Carrillo et al., 2012]. The

algorithms that have been mentioned are plainly relatively old algorithms

and recent research has been carried out over the last decade to develop new

algorithms that can improve run time and can scale to the size of data that

will be collected from telescopes in the future, such as the planned Square

Kilometer Array (SKA).

The SKA specifications have been under development since 1997

[Burke and Graham-Smith, 2010] and the telescope is planned to observe

first light in 2020. The SKA will exist in two locations, South Africa called

MeerKAT and SKA pathfinder in Australia. The science goals of the SKA

are truly profound but there exist many technological challenges that need to

be overcome first. One of these challenges that is key to this project is how

to deal with the deluge of data that will be collected from the telescope when
3https://en.wikipedia.org/wiki/Dirac_delta_function

https://en.wikipedia.org/wiki/Dirac_delta_function

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 14

in operation. The amount of data that will be gathered at the core will be

multiple Terabits-per-second (Tb/s) with outlier points collecting 100Gb/s.

When this is brought together at a central hub, the amount of data will be

too large to be stored and processed off-line so real time in-situ processing

will be required. Peta-operations-per-second as well as petabytes of mem-

ory will be needed in order to understand the science that will be implicit

in the data [Barbosa et al., 2012]. It can be seen in [Carrillo et al., 2014]

that classical algorithms are very slow with sub-optimal reconstructive per-

formance. Therefore, due to the incredible data rates and requirements for

in-situ processing new modern algorithms are required.

2.2.2 Modern Algorithms

Although a lot of data will be collected, new algorithms attempt to exploit

the sparsity of this data in relation to the Fourier co-efficients present using

modern techniques of compressed sensing. Compressed sensing is a method

that allows signal reconstruction whilst circumventing the Nyquist-Shannon

theorem [Kutz, 2013]. Work found in [Carrillo et al., 2014], [Carrillo et al., 2012]

and [Wiaux et al., 2009] show promising results regarding the quality of im-

age reconstruction as well as algorithm run time using compressed sensing.

Further discussion of similar algorithms that use compressed sensing tech-

niques can be found in [Carrillo et al., 2014].

Another field that can be applied to the reconstruction of radio images

is super resolution; this is the method that will be used in this work. De-

fined in [Starck and Murtagh, 2007], "Super resolution consists of recovering

object spatial frequency information outside the spatial bandwidth of the im-

age formation system" i.e. recovering information that is outside the realm

of measurement. Work by [Gerchberg, 1974] and [Honma et al., 2014] show

how super resolution methods can be applied to directly recover radio images.

Further research in this field has been carried out by [Dong et al., 2014], in

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 15

the context of natural images, showing how the general pipeline used in super

resolution can be thought of as a simple convolutional neural network. These

results are appealing on several levels, the first being that super resolution

is already a field of research that has been applied to radio interferometric

images with fair results. Also, the use of a convolutional neural network is

attractive as it means that if one were able to develop an network that works

for radio images, then one can benefit from the very quick test time once

a network has been trained. Motivated by the results of [Dong et al., 2014]

it has been decided to investigate here whether one can develop a suitable

convolutional neural network that can achieve similar reconstructive perfor-

mance to alternative state-of-the-art algorithms but at potentially a frac-

tion of the test time of current methods. Details of the methodology used

by [Dong et al., 2014] can be found in Section 3.1, but we shall first give in

the next section an overview of what convolutional networks are and why

they would be useful in the problem of radio image reconstruction.

2.3 Convolutional Neural Networks

Convolution neural networks (CNNs) have revolutionised the field of com-

puter vision [LeCun et al., 1989]. However, it is only recently with the

combined boost in computer processing power using Graphical Process-

ing Units (GPUs) and an abundance of data that CNNs really have taken

off [Krizhevsky et al., 2012]. In contrast to traditional neural networks,

CNNs are not fully connected at each layer. A traditional neural network

would have for each neuron a connection to each neuron in the previous

layer. As an example, if one were to consider an image of 150 × 150 × 3

the resulting weights produced equal to 67500, and considering that there

will usually be several hidden layers of neurons, this can quickly get over-

whelming. Instead, CNNs arrange neurons as a 3D volume, where the height

and width are determined by the convolution operation and the depth de-

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 16

(a) Traditional Neural Network

(b) Convolutional Neural Network

Figure 2.2: Comparison traditional neural network neuron connectivity
with that of a convolutional neural network (Reproduced
from [Karpathy, 2016])

termined by how many feature maps desired by the user (See Figure 2.2 for

a visual comparison of traditional neural networks and convolutional neural

networks.)

The core computational operation of CNNs is the convolution operator.

This is a mathematical operation the combines two functions to produce

a third. It works in effect by sliding one function over another, multiply-

ing it and adding together, see Equation 2.4 [Bengio and Courville, 2016,

Karpathy, 2016].

h[x, y] = f [x, y] ∗ g[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2] · g[x− n1, y − n2] (2.4)

where h[x, y] is the new output function convolving f [x, y] with g[x, y].

The output function is usually called the feature map or activation map, with

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 17

Figure 2.3: This figure shows the components of a convolution operation on a 2D
input image with a kernel (Reproduced from [Olah, 2016])

f [x, y] understood as the input and the g[x, y] labelled as the kernel. This

can be visualised with Figure 2.3

Much like the field of compressed sensing mentioned in Section 2.2.2

CNNs use prior knowledge of sparsity in systems to improve performance.

CNNs leverage sparse interactions, parameters sharing and equivalent repre-

sentations to boost performance of the model [Bengio and Courville, 2016].

To enjoy the benefits of sparsity, the kernel is often much smaller than the

input. This helps control the number of parameters in the system, but the

size of the kernel is a hyperparameter, which needs to be chosen by the

practitioner.

The beauty of convolutions is that the output produced from convolving

two functions together can itself be used as input for the next layer. This

allows convolutional layers to be built that are using the previous layer’s

feature map as input into the next. Figure 2.4 is also helps one to visualise

the layering process.

The hierarchical nature of these convolutional layers means features can

be learned, without implicitly choosing them beforehand. This goes back to

the original roots of artificial intelligence and neural networks in attempting

to model the brain; it was shown in early work by [Hubel and Wiesel, 1959]

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 18

that hierarchical layers of feature maps in the visual cortex of the brain (in

cats) are central to the processing of images.

2.3.1 Architectural Components

CNN architecture design is a very active area of research, with new archi-

tectures being proposed almost every month. However, there are common

elements that form the building blocks of pretty much every CNN. The gen-

eral components of a CNN often include the following:

1. Input layer.

2. Kernel or filter.

3. Feature map.

4. Activation function.

5. Pooling layer.

6. Fully connected layer.

7. Final output later.

Figure 2.4: This figure shows the typical convolutional neural network architec-
ture (Reproduced from [Wikipedia, the free encyclopedia, 2016])

It is typical to think of the combination of the convolution operation

and non-linearity as a single convolutional layer. The activation function

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 19

is chosen by the machine learning practitioner. The most common choice

today is a rectified linear unit (ReLU [Nair and Hinton, 2010]). There exist

many other forms of activation functions such as sigmoid, tanh, or at a

layerwise level maxout, to name a few but it has been shown that for deep

learning, ReLU offers much better performance and faster convergence for

CNNs [Krizhevsky et al., 2012]. The ReLU non-linearity can be represented

by Equation 2.5.

f(x) = max(0, x) (2.5)

where x is the weighted sum of the inputs to a node.

If not using pooling, the output of the ReLU operation is then passed

as input into the next layer. Depending on how many layers one wishes

to implement, this process is repeated until the final layers, which are fully

connected much like those of traditional neural networks. The output of the

fully connected layers is used to compute a differentiable loss function whose

gradient will be used for back propagation to update the parameters of the

network. There is considerable choice as to which loss function one can use,

however, depending on the type of problem one is trying to solve, there are

some that are recommended.

If the desired output is a discrete value, the problem is defined as a

classification problem [Prince, 2012]. In contrast, if one desires a continu-

ous function, the problem is a regression problem. The problem of radio

interferometric imaging is a continuous problem and so a suitable metric for

regression is required. The most common loss function for regression prob-

lems is known as a Euclidean loss defined in Equation 2.6. This function is

also known as the Residual Mean Squared Error [Karpathy, 2016] and calcu-

lates the difference in values from the data to the predictions. A discussion

of some of the pitfalls relating to using Euclidean loss functions can be found

in Chapter 5.

CHAPTER 2. BACKGROUND & LITERATURE REVIEW 20

d2(I1, I2) =

√∑
p

(Ip1 − I
p
2)2 (2.6)

The loss function is then used to update the parameters of the network us-

ing a common algorithm called stochastic gradient descent (SGD) [LeCun et al., 1998,

Ng, 2009]. Due to the time it would take to run the algorithm over a large

training set, minibatch stochastic gradient descent is often used when train-

ing deep networks [Karpathy, 2016].

Chapter 3

Design & Methodology

This chapter describes the data that has been used in this project and out-

lines the computer resources and techniques used to conduct the analysis.

3.1 Super Resolution Neural Network: SRCNN

In Chapter 2, super resolution was discussed as an important technique in

computer vision. More specifically, the paper by [Dong et al., 2014] pre-

sented a similar problem to that of radio interferometric image reconstruc-

tion where a low resolution image could be mapped to a high resolution

image using a convolutional neural network. Chapter 2 also discussed the

potential benefits CNNs offer regarding run time compared to current algo-

rithms. The current work will explore this field of study further to investigate

whether a CNN can be used to solve the problem of radio interferometric

image reconstruction for use at the SKA.

The SRCNN pipeline is explained now in more detail along with how

it might be used to build a network targeted at radio image reconstruc-

tion instead of natural images. As mentioned in Section 2.3.1 the general

architecture of a CNN consists of common components: an input layer,

a non-linearity function and a fully connected output layer. The SRCNN

21

CHAPTER 3. DESIGN & METHODOLOGY 22

Figure 3.1: This figure shows the general architecture of the SRCNN (Reproduced
from [Dong et al., 2014])

of [Dong et al., 2014] has this general structure with 3 main stages of for-

mulation, patch extraction to create inputs, non-linear mapping via the con-

volution operator, and finally reconstruction via the output layer. In the

first stage of patch extraction, overlapping patches are extracted from the

low resolution image1. Each patch is then represented as a high dimensional

vector which acts as the input to the network. This high dimensional vector

is mapped to another high dimensional vector using the convolution oper-

ation discussed in the preceding chapter in Section 2.3. The aggregation

of these vectors in the last stage produces a high resolution image as the

output. The general SRCNN architecture can be seen in Figure 3.1.

The pipeline of computation can be understood with the following equa-

tions [Dong et al., 2014]. The paper denotes the low resolution image as the

vector Y with the intention of outputting the continuous function, F (Y),

that is as close as one can get to the ground truth image, X. A network

architecture that has 3 layers is used, each with varying kernel sizes. The

effect of the first layer can be expressed with the equation shown in Equa-

tion 3.1. This equation shows that the low resolution input image, Y is

being convolved with a set of weights W1 to produce a feature map, F1(Y).

The following step can be expressed by Equation 3.2 which takes the re-
1Downscaling and then upscaling using bi-cubic interpolation creates a synthetic low-

resolution image.

CHAPTER 3. DESIGN & METHODOLOGY 23

sulting feature map from stage one and convolves that with a different set

of weights, W2, to produce an output F2(Y). Finally, stage 3 repeats the

process one more time, except without a non-linearity step to produce a

continuous function, F (Y) expressed in Equation 3.3

F1(Y) = max(0,W1 ∗Y +B1) (3.1)

F2(Y) = max(0,W2 ∗ F1(Y) +B2) (3.2)

F (Y) = W3 ∗ F2(Y) +B3 (3.3)

The continuous function F (Y) is then compared to the ground truth

image, X, using the loss function, chosen to be a simple Euclidean loss

L(Θ), with n signifying the number of training samples in a minibatch.

L(Θ) =
1

n

∑
‖F (Yi,Θ)−Xi‖2 (3.4)

Following the comparison, the weights are updated using minibatch stochas-

tic gradient descent with a momentum coefficient of 0.9 and a learning rate,

η, the process is repeated until convergence.

∆i+1 = 0.9 ·∆i − η ·
∂L

∂W l
i

(3.5)

The role of patch extraction helps with training the network through con-

trol of the number of parameters and control overfitting. (See Section 3.2.2

for a brief discussion on handling over fitting of data.) The patch extrac-

tion process creates a collection of ‘sub-images’ that are of much smaller size

compared to the original input image. This controls the number of weights

that are produced following the convolution with a kernel. This also allows

one to create many ‘sub-images’ that can be used for training. It is known

CHAPTER 3. DESIGN & METHODOLOGY 24

that deep networks benefit from training with large datasets. The method of

using patches to create a large dataset was used here but it will be discussed

later in Chapter 5 how for further research one may want to consider using

a full image as input rather than sub-images.

For this project, similar architectures will be be explored. The investigation

hopes to discover whether CNNs have the potential to be used for radio

interferometric image reconstruction. The sections that follow outlines the

items used to investigate this problem.

3.2 Data

The data that has been used in this project has been gathered from two

sources, ImageNet [Russakovsky et al., 2015] and the zooinverse2 galaxy zoo

project.

Ideally it would have been desirable to use a large dataset of astronomical

images observed in the radio spectrum. However these were not available

at the time of the work. Initial experiments used ImageNet data; it was

later decided to use astronomical images observed in the optical spectrum as

being somewhat closer to the visual structure expected in the radio images.3.

However, in order to use optical images for training, some pre-processing is

required.

3.2.1 Thresholding

For the optical images to be more akin to radio images, one must perform

a threshold of the originals to remove the excess noise that can be observed

in the background. Shown in figure 3.2 is a comparison of an optical image
2https://www.galaxyzoo.org/
3The complete optical galaxy zoo dataset can be downloaded from https://www.

kaggle.com/c/galaxy-zoo-the-galaxy-challenge/data

https://www.galaxyzoo.org/
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/data
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/data

CHAPTER 3. DESIGN & METHODOLOGY 25

(a) Randomly selected image from galaxy zoo dataset

(b) M31

Figure 3.2: Comparison of astronomical image observed in the optical domain (a)
and with an astronomical image oberved in the radio domain (b)

chosen randomly from the dataset and a radio image observed at the VLA.

It can be seen that the optical image contains more background information

than that of the radio image.

If thresholding is not done, the model can learn the noise and as a result

CHAPTER 3. DESIGN & METHODOLOGY 26

does not handle real radio images well. Results from a model that has been

trained on optical images that have not been pre-processed can be found in

Chapter 4.

Thresholding the data is a sensitive task. Setting the threshold too high

will result in too much information being set to zero, whereas setting the

threshold too low results in a model that will learn the noise. With regard to

choosing the correct level of threshold a domain expert, Dr. Jason McEwen,

identified that a threshold in the range of 0.18 - 0.22 would be a suitable value

to take.4 To ensure this was appropriate preliminary tests were carried out to

see how the signal-to-noise ratio (SNR), Equation 3.6 shown below, of dirty

images and reconstructed images behaved when applying these thresholds.

SNR = 20 log10

(
‖x‖2
‖x− x̂‖2

)
(3.6)

Above, x represents the original image whereas x̂ represents the recon-

structed image. Shown in Figure 3.3 are the results of applying a threshold of

0.18, 0.20 and 0.22 to the dataset. It can be seen that the best performance

with respect to SNR occurs with a threshold = 0.20.

3.2.2 Handling Overfitting and Underfitting

When using regression it is important to understand the subtleties of select-

ing the right model. The practitioner must be careful not to over fit the

model to the training data. It might naively be thought that one can just

train a model, and then just select the model which contains the parameters

that give the lowest error. This is not a good idea since if one simply selects

the model that gives the lowest error, there is a risk of selecting a model that

overfits the data. In other words one will be selecting the model that best

fits the training data, but would not be able to handle data that the model

has not seen before.
4This was judged from results that can be found in Figure A.1 in Appendix A

CHAPTER 3. DESIGN & METHODOLOGY 27

Figure 3.3: Relative SNR for the dirty image and the reconstructed image.

A technique that addresses this problem is cross-validation [Ng, 2009,

Ivezić et al., 2014]. A simple approach to cross validation is to take the entire

data set and to split it into 3 parts: the training set, the cross validation

(or simply validation) set and the test set. It is usually the case that the

training set should consist of 50-70% of the data, and the other two parts

divided equally.

The training set determines the optimal weights for a given choice of

architecture. The training set is then used to evaluate the training error

between the input and the output by computing the Euclidean loss, Equa-

tion 3.4.

The validation set is used to evaluate the validation error of the model.

Since the validation set was not used when fitting the model, it is a better rep-

resentation of how well the model is doing. Thus, one would want to minimise

the validation error in order to get a better model in general[Ivezić et al., 2014].

CHAPTER 3. DESIGN & METHODOLOGY 28

When the model has been chosen from the minimised validation error,

the test error is evaluated using the test set. The results from this test error

indicate how reliable the model is for the general case and for novel data.

It is advisable to have both a validation set and test set because just as the

weights can be learned from the training set, the hyperparameters can be

learned from the validation set; because as we tweak them and look at the

validation error, there is the risk that we are optimizing these parameters to

suit the validation set.

3.3 Tools & Technology

3.3.1 Frameworks

Many frameworks exist today that abstract much of the complex implemen-

tation of deep learning algorithms away from the user, allowing the user to

focus on applying the algorithm itself. It was felt appropriate to leverage

the power of these mature software packages to conduct the experiments.

Although the level of abstraction offered by frameworks aids development

time, it was also desired to have a framework that can be manipulated at a

low level should one be required to implement novel architectures and cus-

tom layers. To choose the most appropriate framework for the problem at

hand, a deep learning framework review has been carried out. A screen shot

of the review can be seen in Figure 3.4.

Following the review of the various frameworks that were available and

after investigating the current literature around image reconstruction it was

decided to use Caffe [Jia et al., 2014].

Caffe offers many pre-built layers but also allows custom layers to be

built if required. Also, the relative maturity of the framework equates to a

large community of developers and active forums. Another reason why Caffe

was favoured over other frameworks is that it was the framework used for

CHAPTER 3. DESIGN & METHODOLOGY 29

Figure 3.4: Screenshot of wiki post written on www.astro-informatics.org

developing SRCNN5 by [Dong et al., 2014].

3.3.2 Computer Resources

A very important aspect to consider before running deep learning experi-

ments is to see what computer resources one has available. It is understood

that the use of a GPU can give considerable speed up when carrying out

computationally expensive jobs [Krizhevsky et al., 2012]. To motivate the

choice of a GPU over a CPU, a small test was carried out for simple, slightly

modified, code provided by [Dong et al., 2014]. The results from this small

experiment showed that for a network trained on a CPU for a maximum

of 500 iterations, time to complete was 5 mins 35 seconds. In contrast, the

same network trained on a GPU for the same number of iterations gave

considerable speedup finishing in a time of 59 seconds6. With this in mind,

it was decided to conduct the experiments here on GPUs. It was decided

to configure a GPU Amazon instance to run the experiments (g2.2xlarge

Amazon instance running on Ubuntu operating system has been used).7

5Code can be downloaded from http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
6See http://www.astro-informatics.org//wikis/radio_learning//posts/

tutorials/2016/07/23/CPU-vs-GPU.htmlfor details of the test
7Configuration code and scripts can be found athttp://www.astro-informatics.org/

/wikis/radio_learning//posts/tutorials/2016/07/22/Caffe-on-AWS.html

www.astro-informatics.org
http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/07/23/CPU-vs-GPU.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/07/23/CPU-vs-GPU.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/07/22/Caffe-on-AWS.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/07/22/Caffe-on-AWS.html

CHAPTER 3. DESIGN & METHODOLOGY 30

The specifications of the GPU used in conducting experiments is shown in

the table below:

$ nvidia-smi -q | head

==============NVSMI LOG==============

Timestamp : Sat Jul 23 17:41:45 2016

Driver Version : 352.93

Attached GPUs : 1

GPU 0000:00:03.0

Product Name : GRID K520

Product Brand : Grid

$ uname -a

Linux ip-172-31-19-64 3.13.0-92-generic #139-Ubuntu \

SMP Tue Jun 28 20:42:26 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux

3.4 Modeling Visibilities

As defined in Section 2.1 a visibility is a fundamental concept with regards

to radio interferometry. A visibility describes the response of the telescope

in relation to the observed image distribution on the sky. In order to model

visibilities, the software package PURIFY has been used [Carrillo et al., 2014].

To model the measurement process of an interferometric telescope a Fourier

transform of the ground truth image, X, is done and then a binary mask is

applied to the result. The combined Fourier transform and multiplication

by a mask is represented by Φ in Equation 2.2. The observations of the

telescope is defined by the mask, in a sense it describes where measurements

are taken in the Fourier plane. In our simulations the mask is modelled

CHAPTER 3. DESIGN & METHODOLOGY 31

Figure 3.5: This figure gives a visual representation the matrix M with varying
PI values which defines the telescope configuration. PI = 0.05 (left),
PI = 0.20 (middle), PI = 0.50 (right). Note, the origin x=0 and y=0
are in the top left of the image.

using the statistical properties of a Gaussian, since it is expected that more

measurements would be gather at lower frequencies than higher ones. Ex-

amples of binary mask 2D matrices can be seen in Figure 3.5 but it should

be noted that because the signal that is received is real, there is a conjugate

symmetry relationship in the Fourier space. The Fourier co-efficient for the

−x coordinate is the complex conjugate of the Fourier co-efficient for +x

coordinate, which means when positive x is measured, there is no need to

measure negative x because it is effectively already measured.

A parameter that decides the type of visibilities one observes in relation

to the mask is the proportion of image sampled value, or simply the PI-

value. The PI-value is the proportion of mask samples one wants to use. For

example, say a mask is set and applied to an image, the PI-value will use x

proportion of those samples that have been taken. The combination of the

mask and the PI-value uniquely identify the configuration of the telescope.

It will be discussed later in Chapter 4 what are the significances of allowing

these values to vary during training and validation.

PURIFY is itself an algorithm that aims to recover ground truth images

from dirty images; however, for this project, only the code to simulate visi-

bilities have been used. PURIFY uses SNR as the quality metric, so in keeping

CHAPTER 3. DESIGN & METHODOLOGY 32

with the literature, SNR is used here also. It is computed using the equation

given earlier, Equation 3.6.

3.5 Network Architecture and Hyperparameters

With regards to the network structure, much of SRCNN remains the same as

used by [Dong et al., 2014]. This was done so that a foundational test could

be carried out to see whether the network proposed by [Dong et al., 2014]

could work for radio images. Choices made include the kernel sizes, depth

of feature maps, learning rate and learning policy (for example, whether

the learning rate is decremented or weights made to decay). It was shown

by [Dong et al., 2014] that increasing kernel sizes improved performance at

the cost of training time. This issue will be investigated also with results

and discussion in the following chapters.

3.6 Workflow

From the discussion in Section 3.2.2, it has been decided to use the hold-out

cross validation method with a dataset of 100 images split into 60 training,

20 validation, and 20 test. Although this seems like a small dataset, due to

the patch extraction process described in Section 3.1, the actual number of

training and validation examples is ∼ 70,000 and ∼ 30,000 respectively. The

model is trained using mini-batch SGD. Code from [Dong et al., 2015] has

been used to formulate the patches and create HD5 files that can be used by

Caffe.

Caffe uses prototxt files to define the network and to tell the network

what hyperparameters to use. Developed by Google, prototxt files can be

thought of as JSON files that are used to help serialise data. Within these

files, users can define which datasets take part in which layers; this allows

one to specify a training phase, which uses the training data, and validation

CHAPTER 3. DESIGN & METHODOLOGY 33

phase (called test phase in Caffe) that uses the validation dataset. The

difference between the training phase and the validation phase is that the

training phase performs a forward pass and backward pass of the network

whereas the validation phase only performs a forward pass.

An example prototxt file that defines the SRCNN can be found in the

Appendix C. Below is an example of the solver.prototxt which looks for

a network definition and sets certain hyperparameters ready to be used by

the Caffe binary to begin training.

The train/test net protocol buffer definition

net: "RICNN/model/955-gz-optical-91-wt/RICNN_net.prototxt"

test_iter: 556

Carry out testing every 500 training iterations.

test_interval: 500

The base learning rate, momentum and the weight decay of the network.

base_lr: 0.00001

momentum: 0.9

weight_decay: 0

The learning rate policy

lr_policy: "fixed"

Display every 100 iterations

display: 100

The maximum number of iterations

max_iter: 200000

snapshot intermediate results

snapshot: 500

snapshot_prefix: "RICNN/model/955-gz-optical-91-wt/RICNN"

solver mode: CPU or GPU

solver_mode: GPU

#solver_mode: CPU

CHAPTER 3. DESIGN & METHODOLOGY 34

Note the hyperparameters that have been defined; here we are specifying

the path to where the network is defined:

RICNN/model/955-gz-optical-91-wt/RICNN_net.prototxt.

We then specify how often to validate the model. A base learning rate

of 0.00001 is used along with a momentum of 0.9. We do not set a weight

decay here but this can be set in relation to a different learning rate policy

such as step or inv. Since this file relates purely to optimization of the model

and tweaking hyperparameters, this will not be changed except for ‘maxi-

mum iterations’ of which defines how many forward and backward passes

the network should be trained for.

When the net.prototxt file and solver.prototxt files are complete,

these can be sent as arguments to the Caffe binary using the following com-

mand:

time ./build/tools/caffe train --solver \

RICNN/model/955-gz-optical-91-wt/RICNN_solver.prototxt -gpu 0 \

2>&1 | tee logs.log

The above utilises the UNIX command tee which sends the standard

output to a file as well as to the screen. The file that it is sent to can be pro-

cessed using the file parse_logs.py that comes with the Caffe repository8.

This produces two files, a training log and a validation log, which gives the

values for the loss as a function of iteration.

The quantity that is of most interest to the user of the system is SNR;

however this is not suitable as a training metric. A compromise is reached

by monitoring SNR for the training and validation data with best on perfor-
8A bespoke AWK program has been written to do the same job, this is

documented at http://www.astro-informatics.org//wikis/radio_learning//posts/
tutorials/2016/08/02/Caffe-cleanup.html

http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/08/02/Caffe-cleanup.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/08/02/Caffe-cleanup.html

CHAPTER 3. DESIGN & METHODOLOGY 35

mance on validation being defined on SNR. In order to do this, the weights

for each iteration are needed.

In solver.prototxt is an option for snapshotting the model at a given

iteration. This snapshot captures all information about the model for that

iteration and saves this information to a .caffemodel binary file. To extract

the information regarding the weights and biases for this particular model

matcaffe has been used. Matcaffe is a MATLAB interface for Caffe. Using this

interface one can obtain the weights and biases for a model corresponding to

a particular iteration and save the results to .mat files. Having the weights

and biases saved in .mat files allows one to compute the SNR for images in

the validation set at a given iteration. The diagram below shows the typical

workflow when constructing a new model.

Chapter 4

Results

4.1 Preliminary Results Using ImageNet

As discussed in Chapter 3, the initial experiments were heavily influenced

by the work carried out in [Dong et al., 2014]. The SRCNN was trained

on ‘natural images’ from the ImageNet dataset [Russakovsky et al., 2015].

These are everyday images such as animals, cars and other objects. SRCNN

synthetically creates low resolution images by downsampling and then up-

scaling via bi-cubic interpolation. In the context of radio imaging, the low

resolution image is caused by the way the telescope captures information.

Hence our version of the low resolution image is a ‘dirty image’ created to

emulate the process of observation through a radio telescope (where the level

of dirtiness is determined by the PI-value, see Figure 3.5 for details). As an

initial test, it was of interest to see how a network that has been trained on

natural images with synthetically rendered low resolution inputs via bi-cubic

interpolation could handle natural images but in the above different form of

low resolution.

Figure 4.1 shows a randomly selected image from the validation set from

SRCNN, but with the ‘dirty image’ pre-processing method, applied using the

algorithm from PURIFY in B. Further examples using the ‘dirty image’ pre-

36

CHAPTER 4. RESULTS 37

Figure 4.1: Image taken from validation set of SRCNN, but converted to low
resolution of a dirty image instead of by bi-cubic interpolation.

processing method of other ‘natural images’ not in the SRCNN validation

set can be seen in Figure 4.2.

In Figure 4.3 are the results for inputting a dirty astronomical input into

the SRCNN network which has been trained on ImageNet.

Although it may be visually difficult to see in the figures shown here,

the network was able to to satisfactorily boost the SNR of this different

pre-processed low resolution image, giving hope that similar improvement

could be seen where astronomical images are provided as training data and

as inputs.

4.2 Astronomically Trained Networks

4.2.1 Single Telescope Observation

If PI-value and the mask are fixed throughout training, then this physically

relates to a telescope of a certain configuration for a single observation. This

is the easiest model to deal with, so initial experiments were conducted using

this setting. As discussed in the previous chapter, the SRCNN was used as a

CHAPTER 4. RESULTS 38

(a) A test image similar to ones found in ImageNet

(b) Another image similar to those in ImageNet

Figure 4.2: Randomly selected natural images used to test how SRCNN handles
a different low resolution synthesising method.

starting point for trying to solve the ill-posed problem of radio interferometric

image reconstruction.

Following the preliminary tests carried out in the previous section 4.1 it

was decided to progress towards training the SRCNN on astronomical images

using a pre-processing method akin to that which would be carried out when

using radio telescopes. The SRCNN has been shown to have better perfor-

mance with larger kernel sizes, more specifically the network architecture of

9-5-5 was shown the have the best results [Dong et al., 2014]. However when

running convolutional neural networks, small changes in kernel size can have

CHAPTER 4. RESULTS 39

(a) Random astronomical image taken from the galaxyzoo dataset that has been
dirtied

(b) Cluster

Figure 4.3: Randomly selected astronomical images used to test how SRCNN
handles a different low resolution synthesising method.

a drastic effect on training time. This is due to the increase in the number of

parameters involved when one chooses to increase a kernel size. Therefore,

it was decided to first train the network on the initial network architecture

proposed in [Dong et al., 2014] which was 9-1-5. This would then later be

compared to the 9-5-5 to see the difference in performance training time

required. All experiments are carried out using the training and validation

datasets described in Section 3.2.

In Figure 4.4, using the 9-1-5 architecture, it can be seen that there is

a period of erratic training and validation error but that at around 40,000

iterations, a sudden drop in both training and validation error can be ob-

served. At the same point, validation SNR rises sharply and maintains a

CHAPTER 4. RESULTS 40

Figure 4.4: This figure shows how a 9-1-5 architecture trained with PI = 0.2 and
mask set performs as a function of iterations, for 100,000 iterations.

steady increase in value. It can be seen that the maximum validation SNR,

over this image set, is 14.266 at iteration 98500. In Figure 4.5, the same pat-

tern emerges, but training is faster. A higher validation SNR value of 14.607

is also achieved, with the maximum SNR occurring at iteration 100,000, and

with no apparent plateau, this suggests that further increases in SNR could

be achieved if one were to continue training such an architecture for longer.

This was indeed carried out for a further 200,000 iterations, taking the total

to 300,000 iterations. The results of this can be seen in Figure 4.6

Figure 4.6 shows how the SNR did indeed improve with further iterations

but seemed to plateau between 250,000 and 300,000. Because of this, it was

decided to keep the maximum number of iterations constant at 300,000 for

CHAPTER 4. RESULTS 41

Figure 4.5: This figure shows how a 9-5-5 architecture performs as a function of
iterations, for 100,000 iterations.

all further. The results of increased training time for the 9-5-5 architecture

is shown in Figure 4.6. A further experiment, with architecture 9-9-5, was

conducted but the time taken to train this model however was considerably

slower due to the increase in parameters and achieve only a small increase

in maximum SNR. As a result of this, it was decided to carry out investi-

gations with the 9-5-5 architecture and not increase the kernel size further

due to constraints on time (See Figure 4.7 for the results of training a 9-9-5

architecture).

The results presented here already show promising results suggesting that

a CNN can be trained to reconstruct radio images using only dirty images

as input and no other priors. The network learns the filters it needs to

CHAPTER 4. RESULTS 42

Figure 4.6: This figure shows how a 9-5-5 architecture trained with PI-value =
0.2 and a set mask throughout performs as a function of iterations,
for 300,000 iterations.

produce the continuous function F (Y). The setting used in these methods

represent a single telescope configuration for a single observation. Hence

we know at this point that fair results could be obtained using a model

specifically trained for a particular telescope. Ideally one would like to create

a model that allows the mask to vary as this is the more realistic setting of

taking different observations with a single telescope. Obtaining such a model

that is then trained for a specific telescope would be satisfactory but one

wonders if there is a possibility one could train a network that is completely

general in that it could be then deployed for any telescope configuration. As

described in Chapter 2 the configuration of the telescope is set by the mask

CHAPTER 4. RESULTS 43

Figure 4.7: This figure shows how a 9-9-5 architecture performs as a function of
iterations, for 300,000 iterations trained with a fixed value for PI =
0.2 and a set mask.

and the corresponding PI-value. Further investigations will be carried out,

with results in Section 4.2.2, to see if a general network can indeed be trained

that can then be deployed to telescopes where the mask and the PI-value

are different.

4.2.2 Multiple Telescope Observations

As suggested in the previous section, if a training methodology could be de-

vised such that the network’s performance remains the same or even improves

with different configurations of telescope, this would imply that one could

train a single network that could be deployed for any telescope. To investi-

CHAPTER 4. RESULTS 44

gate this, the network architecture of 9-5-5 was trained now with the mask

varying throughout the training. The results of training such a model can

be seen in Figure 4.8. Although noise is added, the setting used here better

represents how telescopes physically make observations. Having a fixed value

for PI-value but varying mask physically represents a single telescope config-

uration making different observations of the sky. Here a maximum SNR of

16.189 is recorded. This is very close to the maximum value observed with

the same network but trained with a fixed mask throughout training. This

is very interesting.

Continuing this investigation a final model was trained that allows both

mask and PI-value to vary throughout training. This setting represents

telescopes with different configurations making different observations i.e. the

complete general case. The results can be seen in Figure 4.9. The model

again produces a similar value to the model given in Figure 4.6 suggesting

that a universal network could be produced.

4.3 User Deployment Investigations

It is of great interest to see how these models would cope should they be

deployed. The following plots show for different models the relative and

absolute SNR for validating on different PI-values and with varying mask.

Figure 4.10 shows the expected improvement in performances as PI-value

increases since higher PI-value equates to more measurements being taken.

There is no big drop off with PI = 0.15 and 0.3 performing well. Although

this setting is not so useful as it is for a single telescope with a particular

observation, it can be seen for a model could be trained for a single telescope

configuration and still have fair performance upon deployment.

As we move progressively to a more realistic setting, Figure 4.11, shows

the results for a single telescope configuration but for multiple observations.

It can be seen that there is a small improvement but also less variability with

CHAPTER 4. RESULTS 45

Figure 4.8: This figure shows how a 9-5-5 architecture trained with PI-value = 0.2
throughout but the mask being allowed to vary performs as a function
of iterations, for 300,000 iterations.

each boxplot. The variability could be understood since we are validating

on a model that we have trained on.

Figure 4.12 shows the general case that considers multiple telescope con-

figurations making different observations. In this instance the performance

is slightly worse, although for high PI values there is less variability in the

plots. For this setting, we have made training much more difficult and com-

plicated and actually seems better if we do not let PI to vary in the training,

suggesting one could get better results training a network for a specific tele-

scope configuration and then deploying this to other telescopes. It can be

seen that good results are achieved for training on specific PI and then ap-

CHAPTER 4. RESULTS 46

Figure 4.9: This figure shows how a 9-5-5 architecture trained with varying PI-
value and varying mask performs as a function of iterations, for
300,000 iterations.

plying that model to other PI-values (other telescopes).

After exploring the various physical observing strategies it can be rea-

soned that for best results one might rather train for a single telescope con-

figuration, however, promising results are still shown for the general case.

CHAPTER 4. RESULTS 47

0.05 0.10 0.15 0.20 0.30 0.40

PI-value

1.0

1.2

1.4

1.6

1.8

2.0

2.2
S

N
R

(a) Relative SNR

0.05 0.10 0.15 0.20 0.30 0.40

PI-value

6

8

10

12

14

16

18

20

22

S
N

R

(b) Absolute SNR

Figure 4.10: Relative SNR and absolute SNR for a setting of fixed PI-value = 0.2
and set mask in training

CHAPTER 4. RESULTS 48

0.05 0.10 0.15 0.20 0.30 0.40

PI-value

1.0

1.2

1.4

1.6

1.8

2.0

2.2
S

N
R

(a) Relative SNR

0.05 0.10 0.15 0.20 0.30 0.40

PI-value

4

6

8

10

12

14

16

18

20

22

S
N

R

(b) Absolute SNR

Figure 4.11: Relative SNR and absolute SNR for a setting of fixed PI-value = 0.2
but mask allowed to vary in training

CHAPTER 4. RESULTS 49

0.05 0.10 0.15 0.20 0.30 0.40

PI-value

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
S

N
R

(a) Relative SNR

0.05 0.10 0.15 0.20 0.30 0.40

PI-value

6

8

10

12

14

16

18

20

22

S
N

R

(b) Absolute SNR

Figure 4.12: Relative SNR and absolute SNR for a setting of both PI-value and
the mask being allowed to vary in training

Chapter 5

Discussion

5.1 State of the Art Comparisons

The performances of the networks that have been trained here are close to

those of the most often used algorithms of today. Refer to Figure 5.1 [Carrillo et al., 2014],

a comparative study of modern radio interferometric image reconstruction

algorithms. The figure shows the SNR for increasing PI-value (labelled as

M/N in the figure). Although the SNR values for the CNN models do not

match up to the best performing algorithms such as BPSA or SARA it is

felt that with sufficient training time and with a training set of radio images,

a CNN could be developed that not only outperforms the state-of-the-art

regarding SNR but would also have a response time in usage un-matched by

todays methods. The benefits of a CNN derive from the fact that a CNN

is constant in response time, O(1) for a given input size. Compare this to

the modern algorithms shown in Figure 5.1 which take considerably longer

when the PI-value increases; a CNN would not be affected by this and would

be able to respond up to 1000 times faster. This kind of speedup is exactly

what is required for future radio interferometric telescopes such as the SKA

mentioned in Chapter 2

50

CHAPTER 5. DISCUSSION 51

Figure 5.1: Comparison of various radio interferometric imaging algorithms
for increasing PI-values, given as M/N here. (Reproduced
from [Carrillo et al., 2014]).

5.2 Further Work

The work carried out in this project is by no means complete; due to the

nature of research there are always further avenues one can explore. Al-

though good results have been achieved using the simple architectures out-

lined by [Dong et al., 2014] it is felt that there are other architectures that

could be used that might provide even better reconstructive performance.

Due to the way radio telescopes take measurements, there is actually in-

formation about the entire image at each Fourier co-efficient. This would

suggest that a more robust method would be to not use patches and sub-

images but to instead use the entire image as input. The issues with this

relate to an explosion of parameters but alternate architectures as discussed

below could potentially control this problem.

CHAPTER 5. DISCUSSION 52

5.2.1 Deconvolutional Layers

One such method that would allow one to use complete images would be

to introduce a deconvolutional layer to the network. The deconvolutional

layer effectively works like the convolutional layer but in reverse. The ef-

fect of such a layer is that instead of reducing the size of the image after a

convolution with the kernel, the size now increases. This would allow one

to have convolutional layers that shrink the size of the original radio image

and then use deconvolutional layers to restore it again. Work conducted

by [Xu et al., 2014] and by [Noh et al., 2015] shows how image reconstruc-

tion (pixel-wise prediction in the case of [Noh et al., 2015]) can be achieved

using such networks. Furthermore, work by [Zeiler et al., 2010] shows that

using deconvolutional techniques, the network can learn mid to high level

features unsupervised, which is what is required for radio imaging.

5.2.2 Max Pooling and Unpooling

Another layer that could be introduced is a pooling layer. It was mentioned

in Chapter 2.3.1 that a common feature of a CNN is a pooling layer. The

purpose of such a layer is to introduce spatial invariance since only the max-

imum value is carried forward. Another effect of this is that it helps control

overfitting by reducing the number of parameters. These two things would

allow for the use of an entire image as an input and move away from patches

and sub-images. Work carried out by [Zeiler et al., 2011] show promising

results regarding reconstruction using a combination of 3D max pooling and

unpooling.

Work by [Noh et al., 2015] looks at combining these methods of deconvo-

lutions and max pooling and unpooling for image segmentation. The results

presented in [Noh et al., 2015] show good results in relation to pixel-wise

classification; this might then be able to be modified to suit the problem of

radio interferometric image reconstruction. A visual representation of the

CHAPTER 5. DISCUSSION 53

Figure 5.2: This figure shows the network architecture used that com-
bines both deconvolutional layers and pooling layers (Reproduced
from [Noh et al., 2015])

network can be seen in Figure 5.2. It should be noted that in order to be

able to carry out these methods, one is required to have a large amount of

data to prevent overfitting.

5.2.3 Bespoke Loss Function

The difference between an observed target and a predicted target in a regres-

sion analysis is known as the residual and is a measure of model accuracy.

Throughout this project, Euclidean loss has been used as the residual for

determining the weight updates. However as can be seen in Figure 5.3 using

Euclidean loss can give surprising results; these images might be judged by

a human observer to have different values while their Euclidean loss is the

same. One might consider the development of a custom loss function or per-

haps engineer a way to train on the SNR itself since this is the main quality

metric that is being used when models are compared. This could for exam-

ple by switching to a training method that did not require a differentiable

metric, such as particle swarm optimisation (PSO).

5.3 Conclusions

From the investigations carried out for this project, it appears that con-

structing a convolutional neural network for radio interferometric image re-

construction is a very promising way forward. It has been shown that an

CHAPTER 5. DISCUSSION 54

Figure 5.3: This figure compares different images that all have the same Euclidean
loss shown in equation 3.4 (Reproduced from [Karpathy, 2016])

improvement of SNR is possible, albeit not to the same level as some of

the state-of-the-art algorithms of today, but an improvement nonetheless. It

is felt that with further research into the CNN technique, one could very

well out-perform the current algorithms of today. One aspect where this

technique already shows significant benefit over other techniques is the time

taken to reconstruct an image, being greatly reduced by many orders of mag-

nitude compared to other algorithms. It is also felt that one could in future

explore architectures that move away from patch extraction and allow the

model to be trained on the entire image. As explained in Chapter 2, the

Fourier components hold information about all spatial elements of the im-

age, therefore it can be reasoned that it would be to be beneficial to train

a model with an input that is the entire image, instead of multiple small

patches.

It has also been shown that one could possibly develop a single model

that encompasses all configurations of telescopes. The implications for this

would mean one could develop an algorithm that could rival CLEAN for

longevity but completely overhaul it in terms of performance.

The future of this field of research is very exciting as a new era of astron-

omy beckons. The technological challenges that face us are unsurmountable

with today’s methods but with the novel techniques proposed here, it is felt

that these challenges could be conquered very soon.

Appendix A

Thresholding

The Figure shown below is a comparison of astronomical images with vary-

ing thresholds.

For further examples, please see http://www.astro-informatics.org/

/wikis/radio_learning//posts/tutorials/2016/08/04/Thresholding-data-II.

html

55

http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/08/04/Thresholding-data-II.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/08/04/Thresholding-data-II.html
http://www.astro-informatics.org//wikis/radio_learning//posts/tutorials/2016/08/04/Thresholding-data-II.html

APPENDIX A. THRESHOLDING 56

(a) Randomly selected image from galaxy zoo dataset

(b) Another randomly selected image from galaxy zoo dataset

Figure A.1: Comparison of threshold levels for astronomical images.

Appendix B

Visibilities

1 function im_d = create_dirty(im, p, input_snr)

2 % This function takes in an image and computes a dirty image with a specified

3 % level of sampling and added noise element. If 3 parameter not specified, no

4 % noise is added. This function is required to generate training and test .h5

5 % data files (see generate_train.m and generate_test.m)

6

7 switch nargin

8 case 2

9

10 rng_seed = 1;

11 % Mask

12 %mask = rand(size(im)) < p; ind = find(mask==1);

13 mask=vdsmask(size(im,1),size(im,2),p,rng_seed);

14 ind = find(mask==1);

15 % Masking matrix (sparse matrix in matlab)

16 Ma = sparse(1:numel(ind), ind, ones(numel(ind), 1), ...

17 numel(ind), numel(im));

18

57

APPENDIX B. VISIBILITIES 58

19 N = numel(im);

20 M = numel(ind);

21

22 A = \@(x) Ma*reshape(fft2(x)/sqrt(N), N, 1);

23 At = @(x) ifft2(reshape(Ma\’*x(:), size(im))*sqrt(N));

24

25 y = A(im); %% Use this for when not considering noise.

26

27 case 3

28

29 rng_seed = 1;

30 % Mask

31 %mask = rand(size(im)) < p; ind = find(mask==1);

32 mask=vdsmask(size(im,1),size(im,2),p,rng_seed);

33 ind = find(mask==1);

34 % Masking matrix (sparse matrix in matlab)

35 Ma = sparse(1:numel(ind), ind, ones(numel(ind), 1), ...

36 numel(ind), numel(im));

37

38 N = numel(im);

39 M = numel(ind);

40

41 A = @(x) Ma*reshape(fft2(x)/sqrt(N), N, 1);

42 At = @(x) ifft2(reshape(Ma’*x(:), size(im))*sqrt(N));

43

44 y0 = A(im);

45

46 % Add Gaussian i.i.d. noise

47 sigma_noise = 10^(-input_snr/20)*norm(im(:))/sqrt(N);

APPENDIX B. VISIBILITIES 59

48 noise = (randn(size(y0)) + 1i*randn(size(y0)))*sigma_noise/sqrt(2);

49 y = y0 + noise;

50

51 otherwise

52

53 fprintf(’Please provide correct number of arguments, at least

54 2 required\n’);

55 end

56

57 %Dirty image

58 dirty = At(y);

59 im_d = 2*real(dirty);

Appendix C

Prototxt File

name: "RICNN"

layer {

name: "data"

type: "HDF5Data"

top: "data"

top: "label"

hdf5_data_param {

source: "RICNN/model/955-gz-optical-91-wt/train.txt"

batch_size: 128

}

include: { phase: TRAIN }

}

layer {

name: "data"

type: "HDF5Data"

top: "data"

top: "label"

hdf5_data_param {

60

APPENDIX C. PROTOTXT FILE 61

source: "RICNN/model/955-gz-optical-91-wt/test.txt"

batch_size: 2

}

include: { phase: TEST }

}

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

param {

lr_mult: 1

}

param {

lr_mult: 0.1

}

convolution_param {

num_output: 64

kernel_size: 9

stride: 1

pad: 0

weight_filler {

type: "gaussian"

std: 0.001

}

bias_filler {

type: "constant"

value: 0

APPENDIX C. PROTOTXT FILE 62

}

}

}

layer {

name: "relu1"

type: "ReLU"

bottom: "conv1"

top: "conv1"

}

layer {

name: "conv2"

type: "Convolution"

bottom: "conv1"

top: "conv2"

param {

lr_mult: 1

}

param {

lr_mult: 0.1

}

convolution_param {

num_output: 32

kernel_size: 5

stride: 1

pad: 0

weight_filler {

type: "gaussian"

APPENDIX C. PROTOTXT FILE 63

std: 0.001

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "relu2"

type: "ReLU"

bottom: "conv2"

top: "conv2"

}

layer {

name: "conv3"

type: "Convolution"

bottom: "conv2"

top: "conv3"

param {

lr_mult: 0.1

}

param {

lr_mult: 0.1

}

convolution_param {

num_output: 1

APPENDIX C. PROTOTXT FILE 64

kernel_size: 5

stride: 1

pad: 0

weight_filler {

type: "gaussian"

std: 0.001

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "loss"

type: "EuclideanLoss"

bottom: "conv3"

bottom: "label"

top: "loss"

}

Bibliography

[Barbosa et al., 2012] Barbosa, D., Anton, S., Gurvits, L., and Maia, D.

(2012). The Square Kilometre Array: Paving the way for the new 21st

century radio astronomy paradigm: Proceedings of Symposium 7 of JE-

NAM 2010. Springer Science & Business Media.

[Bengio and Courville, 2016] Bengio, I. G. Y. and Courville, A. (2016). Deep

learning. Book in preparation for MIT Press.

[Burke and Graham-Smith, 2010] Burke, B. F. and Graham-Smith, F.

(2010). An introduction to radio astronomy. Cambridge University Press.

[Carrillo et al., 2012] Carrillo, R., McEwen, J., and Wiaux, Y. (2012). Spar-

sity averaging reweighted analysis (sara): a novel algorithm for radio-

interferometric imaging. Monthly Notices of the Royal Astronomical Soci-

ety, 426(2):1223–1234.

[Carrillo et al., 2014] Carrillo, R. E., McEwen, J. D., and Wiaux, Y. (2014).

Purify: a new approach to radio-interferometric imaging. Monthly Notices

of the Royal Astronomical Society, 439(4):3591–3604.

[Dong et al., 2014] Dong, C., Loy, C. C., He, K., and Tang, X. (2014). Im-

age super-resolution using deep convolutional networks. arXiv preprint

arXiv:1501.00092.

65

BIBLIOGRAPHY 66

[Dong et al., 2015] Dong, C., Loy, C. C., He, K., and Tang, X.

(2015). Image super-resolution using deep convolutional networks.

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html [Online; accessed

June 06, 2016].

[Gerchberg, 1974] Gerchberg, R. (1974). Super-resolution through error en-

ergy reduction. Journal of Modern Optics, 21(9):709–720.

[Hogebom, 1974] Hogebom, J. (1974). The clean algorithm. Astrophysics &

Astron. Science, 15:417–429.

[Honma et al., 2014] Honma, M., Akiyama, K., Uemura, M., and Ikeda, S.

(2014). Super-resolution imaging with radio interferometry using sparse

modeling. Publications of the Astronomical Society of Japan, page psu070.

[Hubel and Wiesel, 1959] Hubel, D. H. and Wiesel, T. N. (1959). Recep-

tive fields of single neurones in the cat’s striate cortex. The Journal of

physiology, 148(3):574–591.

[Ivezić et al., 2014] Ivezić, Ž., Connolly, A. J., VanderPlas, J. T., and Gray,

A. (2014). Statistics, Data Mining, and Machine Learning in Astronomy:

A Practical Python Guide for the Analysis of Survey Data. Princeton

University Press.

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long,

J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe:

Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093.

[Karpathy, 2016] Karpathy, A. (2016). Stanford university CS231n: Convo-

lutional neural networks for visual recognition. Lecture Notes.

BIBLIOGRAPHY 67

[Karttunen et al., 2007] Karttunen, H., Pekka KrÃűger, H. O., and

Markku Poutanen, K. J. D. (2007). Fundamental Astronomy. Springer

Science & Business Media.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E.

(2012). Imagenet classification with deep convolutional neural networks.

In Advances in neural information processing systems, pages 1097–1105.

[Kutz, 2013] Kutz, J. N. (2013). Data-driven modeling & scientific compu-

tation: methods for complex systems & big data. OUP Oxford.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropaga-

tion applied to handwritten zip code recognition. Neural computation,

1(4):541–551.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.

(1998). Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11):2278–2324.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear

units improve restricted boltzmann machines. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pages 807–

814.

[Ng, 2009] Ng, A. (2009). Stanford university CS229: Machine learning.

Lecture Notes.

[Noh et al., 2015] Noh, H., Hong, S., and Han, B. (2015). Learning decon-

volution network for semantic segmentation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1520–1528.

[Olah, 2016] Olah, C. (2016). Convolution operator. http://colah.github.io/

[Online; accessed September 09, 2016].

BIBLIOGRAPHY 68

[Prince, 2012] Prince, S. J. (2012). Computer vision: models, learning, and

inference. Cambridge University Press.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J.,

Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision (IJCV),

115(3):211–252.

[Skilling and Bryan, 1984] Skilling, J. and Bryan, R. (1984). Maximum en-

tropy image reconstruction: general algorithm. Monthly notices of the

royal astronomical society, 211(1):111–124.

[Starck and Murtagh, 2007] Starck, J.-L. and Murtagh, F. (2007). Astro-

nomical image and data analysis. Springer Science & Business Media.

[Wiaux et al., 2009] Wiaux, Y., Jacques, L., Puy, G., Scaife, A., and Van-

dergheynst, P. (2009). Compressed sensing imaging techniques for ra-

dio interferometry. Monthly Notices of the Royal Astronomical Society,

395(3):1733–1742.

[Wikipedia, the free encyclopedia, 2016] Wikipedia, the

free encyclopedia (2016). Typical cnn architecture.

https://en.wikipedia.org/wiki/Convolutional_neural_network [Online;

accessed September 09, 2016].

[Xu et al., 2014] Xu, L., Ren, J. S., Liu, C., and Jia, J. (2014). Deep convo-

lutional neural network for image deconvolution. In Advances in Neural

Information Processing Systems, pages 1790–1798.

[Zeiler et al., 2010] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus,

R. (2010). Deconvolutional networks. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 2528–2535. IEEE.

BIBLIOGRAPHY 69

[Zeiler et al., 2011] Zeiler, M. D., Taylor, G. W., and Fergus, R. (2011).

Adaptive deconvolutional networks for mid and high level feature learning.

In 2011 International Conference on Computer Vision, pages 2018–2025.

IEEE.

	Introduction
	Background & Literature Review
	Radio Astronomy & Interferometry
	Image Reconstruction
	Classical Algorithms
	Modern Algorithms

	Convolutional Neural Networks
	Architectural Components

	Design & Methodology
	Super Resolution Neural Network: SRCNN
	Data
	Thresholding
	Handling Overfitting and Underfitting

	Tools & Technology
	Frameworks
	Computer Resources

	Modeling Visibilities
	Network Architecture and Hyperparameters
	Workflow

	Results
	Preliminary Results Using ImageNet
	Astronomically Trained Networks
	Single Telescope Observation
	Multiple Telescope Observations

	User Deployment Investigations

	Discussion
	State of the Art Comparisons
	Further Work
	Deconvolutional Layers
	Max Pooling and Unpooling
	Bespoke Loss Function

	Conclusions

	Appendices
	Thresholding
	Visibilities
	Prototxt File
	Bibliography

